Show the binary addition and subtraction of 125 (decimal) and 200(decimal)

Binary Addition and Subtraction of 125 and 200

Step 1: Convert Decimal Numbers to Binary

  • 125 in decimal = 1111101 in binary
  • 200 in decimal = 11001000 in binary

For clarity, we will use 8-bit binary numbers (adding leading zeros where needed):

  • 125 = 01111101
  • 200 = 11001000

Step 2: Binary Addition (125 + 200)

   01111101   (125)
+  11001000   (200)
--------------
  101100101

Explanation of addition:

  • Add bit by bit from right to left, carrying over when sum exceeds 1.
  • Result is 9 bits, so the final sum is:

101100101

This is a 9-bit number; the decimal equivalent is:

  • 101100101₂ = (1×2^8) + (0×2^7) + (1×2^6) + (1×2^5) + (0×2^4) + (0×2^3) + (1×2^2) + (0×2^1) + (1×2^0)
    = 256 + 0 + 64 + 32 + 0 + 0 + 4 + 0 + 1 = 357

Step 3: Binary Subtraction (125 – 200)

Since 125 – 200 is negative, subtraction must be handled using 2’s complement method.


(a) Find 2’s complement of 200

  • 200 = 11001000
  • Step 1: Find 1’s complement (invert bits): 00110111
  • Step 2: Add 1: 00110111 + 1 = 00111000

(b) Add 125 and 2’s complement of 200

   01111101   (125)
+  00111000   (2's complement of 200)
--------------
   10110101
  • Result = 10110101 (8 bits)

Since there is no carry out beyond 8 bits, this result is negative in 2’s complement form.


(c) Find magnitude of result (take 2’s complement of 10110101)

  • 1’s complement of 10110101 = 01001010
  • Add 1: 01001010 + 1 = 01001011

(d) Convert 01001011 to decimal:

= (0×2^7) + (1×2^6) + (0×2^5) + (0×2^4) + (1×2^3) + (0×2^2) + (1×2^1) + (1×2^0)
= 0 + 64 + 0 + 0 + 8 + 0 + 2 + 1 = 75


(e) Final result of 125 – 200 = -75

Leave a Comment